Modern PostgreSQL High
Availability

il
ﬂwf
q

/;\
r!tw

PGConf.Russia 2018

ONGRES

Alvaro Hernandez Tortosa

http://www.apple.es
https://www.ongres.com
https://www.torodb.com

Introduction

Q:\ PGConf.Russia 2018 MM ONGRES

What HA is... NOT

Easy

A mechanism to improve the performance

A risk-free or data-loss free silver-bullet

Totally Available (in the CAP sense). Either CP or
Eventually Consistent with High Availability

Something integrated into core

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

PGConf.Russia 2018

What HA is... NOT

SR = HA

(Streaming R

eplication)

- *- - »-

What | don’t call “Modern” HA

HA built on disk replication or OS virtualization

Aurora is modern, but opaque
Hardware-assisted, drdb, iSCSI etc: a lot of limitations
Typically limited to only 2 nodes

Hot-standby (waste of resources)

PGConf.Russia 2018 = I‘ ‘ | ‘ o |‘

What | don’t call “Modern” HA

Solutions not based on consensus alg

HA is a distributed "agreement” problem

Only well-known consensus algorithms (Paxos, Raft,
/AB) are proven to work

Solutions based on home-grown algorithms would

probably fail

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

What | don’t call “Modern” HA

NOC 1/ AZ 1

NOC2/AZ2 NOC3/AZ3

ENTRY POINT (LOAD BALANCER, DNS, PROXY)

TS
.......
.
.
»
e
.
-
0
.
.
.
.
.
.

Feedback/Sc;-fpting) ~.....Feedback/Scripting

.
“‘
.
.
.
.
K
.
o
.
.
o
.

. SR (+ WAL shipping?) .
° . . .
SR (% WAL shipping?) .
i o
“‘
o o ° .
* S
* L[] L]
L) L]
L] L]
L] L]
L] L]
L] L]
L] L]
L] L]
A Ade = . A Aae ~ . AWANe[= »
L] L]
L] L]
L] L]
(] (]
L] ° -
. . -
-
. b _~ - P
-
(] - L[]
- - - . - ~ _ - . -
~ =~ s ~ — s
~ ~ _ e 7 ~ —- ° 7
~ ~ _\/ o Ve
~ s e ~ < - ~ ~o
~ P -~ - ~ ~
~ . - - - ~ .
~ 7 ~ - P ~ s
N ° — — \<]
7 ~ . P =~ < s ~ .
~ -~ -
7 ~ P ~ - ~
- ~ - - - e <
e Y ~ - ~ 7 P
- =~ T~ ~
P o - ~ P \\\ ° \\
P - T e ~ e -~ < ° ~
// ~ s \\ ~
7 — ° ~ P - ~
- _ - . ~ - - =~
P - ~ o - 3 - - ~ o
- ° - ° -~
O = O - ° =
olo <. oqde

PGConf.Russia 2018

Some open-source “Modern” HA solutions

Patroni (forked from Governor)

Python

Stolon

Go

PGConf.Russia 2018 = .‘ ‘ | ‘ o |‘

https://github.com/zalando/patroni
https://github.com/sorintlab/stolon

Current limitations / problems

Quite involved set up

Too invasive (agent controls PG, even
config!)

No entry-point included (Stolon does;

2 keeper
pe rf) PostgresqL
instance instance
(standby) (master)

Consensus is external (yet another
moving part)

Hard automatic deployments & (& eted or consul store
(Complexity) Stolon Architecture

How tested are them?

PGConf.Russia 2018

HA caveats / recommendations
/ best practices

ﬂ/ PGConf.Russia 2018 MM Q)N G R ES

Replication options (l)

Asynchronous (default):

v data-loss risk

v may require pg_rewind
Synchronous:

v lower performance (pick wisely!)

v may lead to cluster unavailability

PGConf.Russia 2018 - I‘ ‘ | |‘5 o |"

Replication options (ll)

+ Synchronous + asynchronous:

v Multiple synchronous, PG 9.6:

synchronous standby names
node 2, .., node N)°
v Quorum commit, PG 10:

synchronous standby names "ANY x (node 1,
node 2, .., node N)'

PGConf.Russia 2018

Replication options (lli)

- It you include synchronous, you may also want (9.6):

synchronous commit = ‘remote apply’

(otherwise, you achieve no data-loss, but only casual vreads)

PGConf.Russia 2018 = I‘ ‘ | ‘ o |‘

The entry point (l)

How do PostgreSQL clients connect to master?

PostgreSQL does not provide support in
the protocol for advertising the master
and/or propagating cluster topology.

MongoDB does: https://github.com/mongodb/
specifications/blob/master/source/server-
discovery-and-monitoring/server-discovery-and-

PGConf.Russia 2018

https://github.com/mongodb/specifications/blob/master/source/server-discovery-and-monitoring/server-discovery-and-monitoring.rst

The entry point (ll)

- Client libraries in PG 10 add support for multiple

nosts/ports:

nost=hostl,host2 port=portl,port2

postgresgl://host1:port2,host2:port2/

- As well as read-write only or any server:

postgresql://...?target session attrs=read-
writel|any

PGConf.Russia 2018 = I‘ ‘ | ‘ o |‘

postgresql://host1:port2,host2:port2/

The entry point (lll)

» Similarly, JDBC introduced support for multiple hosts
and read-write/read-only host selection (compatible

with earlier PG versions too):

jdbc:postgresqgl://nodel,node2,node3
nodeN/db?targetServerlType=master

jdbc:postgresqgl://nodel,node? nodeN/db?
targetServerilype=preferSlave&loadBalanceHosts=t
rue|false

PGConf.Russia 2018 = .‘ ‘ 1 h ¥ DN G '

The entry point (I1V)

HAProxy, pgbouncer, cloud load balancers, DNS
Abit DIY: how do entry point knows of changes to

master state? Typically scripting required

Patroni healthcheck URLs return 200|503:
GET|OPTIONS http://ip:8008/(master|replica)

Stolon provides a proxy as entry-point. Performance?

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

The entry point (V)

Consul is a distributed consensus database, that also
porovides authoritative DNS support

It could be used to consistently propagate master state
changes via DNS

No changes required on clients

Consul DNS not used by open source HA solutions

PGConf.Russia 2018 = .‘ ‘ | ‘ o |"

Difficulties in automation / deployment

You may not be able to use already created automation

“roles” tor PostgreSQL, as they “take over” it and control

even initdb process.

Many moving parts, many automations needed

Provisioning is done by

A or AutoScaling?

You may need to rely on fixed private IPs or use internal

load balancer

PGConf.Russia 2018 = I‘ ‘ | |‘@ o |"

STONITH

Master gets partitioned away from

cluster. But... clients still connected

and writing!

You need to fence/STONITH “old”

Mmaster.

Architecture/environment/cloud

dependent (scripting again...)

Possible unreplicated transactions

due to asynchronous mode (data loss) DON'T ANYBODY MOVE ...

e —

Best is done through proxy (Stolon)

PGConf.Russia 2018 = I‘ ‘ | ‘ o |‘

Application retry logic

+ Application needs to be programmed to retry
connections, as they may fail and be restarted.

+ Transactions may be aborted on connection fails,
augment retry logic to also transactions.

- On PG>=10 you may check status of a tx:

BEGIN; SELECT txid current(); .., END;
SELECT txid status(txid);

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

HA replicas vs scale read-only replicas

They are not the same!

Should have the same configuration and same
hardware on HA replicas

Fine-tune, if desired, scale read-only replicas for specific
workloads --but never promote them!

Application should be aware of read-only replicas’ stale-

reads.

PGConf.Russia 2018 . I‘ ‘ | |‘5 o I"

Sneak-peek into the future

iﬁj\fm?/; PGConf.Russia 2018 MM ONGRES

HA replicas vs scale read-only replicas

K8S provides monitoring, master election

Also shared storage

And also proxy services

Not sufficiently mature / stable yet

Generic solution, not PostgreSQL-specific

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

Multi-datacenter HA: Hydra (OnGres +
Groupon)

Uses Consul KV and DNS Query APls to provide
consistent, multi data center entry points

Failover in a single data center, followed by instances in
other data centers

Switchover between full data centers

Automatic election of most recent replica

Async REST APl for management

PGConf.Russia 2018 = I‘ ‘ | ‘ o |"

Questions?

N

WWW.ONGres.com

1177 Avenue of the Americas. Suite 500 Crta. de Fuencarral, 22, Edificio 4B, Local 33
New York, 10036, NY Alcobendas, 28108, MD

Phone: +1 (646) 452 7168 Phone: +34 918675554

info@ongres.com

http://www.ongres.com
mailto:info@Ongres.com?subject=

